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ABSTRACT

Two dominant and contradictory narratives describe the apparent contribution 
of information and communication technology (ICT) to climate change. On 
the one hand, ICT can reduce global greenhouse gas (GHG) emissions by, for 
example, supporting energy efficiency or promoting sustainable consumption. 
On the other hand, the increased energy demands of emerging software com-
ponents leveraging artificial intelligence or machine learning can be directly 
and indirectly responsible for GHG emissions. This makes it critical to assess 
whether ICT mitigates or exacerbates net climate impacts and the contribut-
ing factors. The impacts of software have received relatively little attention 
and require the development of new approaches to conduct such assessments. 
In particular, the net effect of complex real-world applications is frequently 
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not measured. In this study, we provide a detailed step-by-step assessment to 
quantify the net global warming potential of an online shopping recommen-
dation system that encourages users to make sustainable consumption deci-
sions. We consider the energy consumed and associated GHG emissions in 
the development and use of the software and compare these to the potentially 
avoided GHG emissions associated with more sustainable recommended op-
tions. The results demonstrate that the software has the potential to indirectly 
avoid more emissions than it causes and that changes at different steps of the 
software can amplify this.

1 Introduction

As outlined in the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC), drastic action is needed to reduce global greenhouse 
gas (GHG) emissions and limit the average annual global temperature increase 
to 1.5°C (IPCC, 2022). The development and use of information and commu-
nication technology (ICT), often referred to as digitalization, has raised high 
hopes for reducing energy demand and GHG emissions. Policymakers and 
practitioners have frequently argued that digital innovations can help combat 
climate change (GeSI, 2015; European Commission, 2022). According to a 
report published as part of the Green Growth papers by the Organization for 
Economic Cooperation and Development (OECD), innovative ICT appli-
cations can contribute to reducing greenhouse gas emissions in many ways, 
including through product-specific improvements, such as optimizing the 
energy efficiency of other products – for example, smart heating and lighting 
systems in buildings – or enabling whole-system improvements for more sus-
tainable production, consumption, and lifestyles (Mickoleit, 2010). The notion 
of ICT-enabled reductions of GHG emissions is supported by research exam-
ining, for example, the replacement of a face-to-face conference with a virtual 
conference (Jäckle, 2021), the relationship between ICT and energy demand in 
OECD countries (Schulte et al., 2016), and ICT-enabled impacts on the energy 
efficiency of household behavior (Bastida et al., 2019). 

Yet already over a decade ago, Arvesen et al. (2011) cautioned against ex-
cessive optimism regarding the effectiveness of technologies in mitigating 
climate change. They recognized that evaluations tend to overlook indirect 
effects and interactions within both natural and social systems (ibid.). In re-
cent years, increasing studies have examined the carbon footprint of ICT and 
considered its potential negative impact on climate. Estimates of global GHG 
emissions from ICT vary widely, ranging from 1.8 % to 2.8 %, depending 
on the assumptions and scale underlying the studies (Andrae & Edler, 2015; 
Belkhir & Elmeligi, 2018; Malmodin, 2020). A review of various studies 
conducted by Freitag et al. (2021) suggests that GHG emissions from ICT 
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could actually be higher, accounting for around 2.1 % to 3.9 % of global GHG 
emissions. Furthermore, the authors note a consensus across all reviewed 
studies indicating that these emissions will not decrease without political and 
industrial efforts and will even increase in the future. 

ICT is associated with various direct and indirect emissions. The classifica-
tions and terms used to define these emissions vary between different ap-
proaches, and no standard terminology has yet been established (Horner et 
al., 2016). In many studies, the term “direct emissions” refers to energy and 
hardware-related GHG emissions of ICT, such as the emissions caused by the 
extraction of the required raw materials or the carbon intensity of the electric-
ity used. In contrast, the term “indirect emissions” is often used to describe 
the impacts that the application of ICT has on other systems and sectors, such 
as consumer behavior, which can be both positive and negative (Arvesen et 
al., 2011; Horner et al., 2016). One type of these indirect effects associated 
with behavioral changes is referred to as “rebound effects.” These effects can 
occur when, for instance, the use of ICT to improve energy efficiency leads 
to increased energy consumption and economic growth (Lange et al., 2020). 
Whether ICT’s positive effects on climate change outweigh the negative ef-
fects continues to be a subject of research.

Studies assessing the climate impacts of ICT have often focused on hard-
ware (Arushanyan et al., 2014; Horner et al., 2016; Hoosain et al., 2023). For 
example, studies have examined emissions from data centers (Hoosain et al., 
2023) and smartphone life cycles (Clément et al., 2020; Sánchez et al., 2022) 
and considered the environmental impacts of substituting material goods with 
digital goods (Pohl et al., 2019). In contrast to hardware, studies assessing the 
climate impact of software are comparatively new, meaning neither methods 
nor standards have yet been established. Although software products are in-
tangible goods, they influence the energy demand of hardware through fac-
tors including the software’s data volume, data traffic, and computing power 
requirements (Gröger et al., 2018). With the increasing use of machine learn-
ing (ML), such as in the form of large language models (LLMs) for chatbots 
such as GPT-4, questions around the energy demands of this technology have 
attracted the attention of researchers and practitioners in recent years (Strubell 
et al., 2019; Bender et al., 2021; Kaack et al., 2022; Luccioni et al., 2022). 
While Rolnick et al. (2023) outline several domains where ML can be used 
to combat climate change, such as enabling low-carbon electricity, reducing 
transportation activity, or facilitating behavior change, studies are increasingly 
also assessing the impact of ML models on GHG emissions (Amodei & Her-
nandez, 2018; Strubell et al., 2019; Zhang et al., 2022). 
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To contribute to the reduction of global GHG emissions, both ICT in general 
and ML-based software in particular must ensure that their positive impacts 
outweigh their negative impacts. Therefore, both direct and indirect impacts 
must be evaluated across the life cycle of each application. In this article, we 
build on recent research and describe an attempt to assess the direct and indi-
rect impacts of a given ML-based software on GHG emissions, which we refer 
to as net impacts. Our study aims to provide an assessment of the net impact 
of modern software in real-world applications, focusing on online commerce 
and sustainable purchasing recommendations. 

The software application examined in this study is designed to support sus-
tainable purchase decisions and was developed as part of the Green Con-
sumption Assistant (GCA) research project. The goal of the GCA project is 
the promotion of sustainable consumption on the search engine Ecosia1, such 
as by encouraging users to buy products with a lower environmental impact 
than comparative products that they would otherwise purchase. The auto-
mated sustainable shopping recommendations on Ecosia’s shopping vertical 
rely on several steps, such as data scraping from product web pages in online 
shops, computing, and the training and usage of an ML model, all of which 
require energy. We analyze the solution developed by the GCA and con-
duct a case study to evaluate the overall impact on global warming potential 
(GWP) – measured in carbon dioxide equivalents (CO2e) – of a sustainabil-
ity-focused software system with modern ML components. To perform this 
assessment, we follow a life-cycle perspective that considers user behavior 
and existing product life-cycle assessments (LCAs) to estimate the potential 
indirect contribution of the automated sustainable shopping recommendations 
to emission avoidance. To assess the energy consumption of the software, we 
use CodeCarbon, an existing measuring tool. We apply these to our use case to 
obtain estimates of the climate-related positive and negative impacts, as well 
as estimates of the relative contributions of the various steps in the develop-
ment, execution, and use of the software. This approach allows us to directly 
compare the energy consumption of a state-of-the-art recommender system 
with the estimated GHG emissions avoided by promoting sustainable purchase 
decisions. To evaluate the overall GWP of our use case sustainability-oriented 
software, we identify areas characterized by high energy consumption, as well 
as areas with savings potential. However, it is important to recognize that it is 
not possible to obtain precise figures using this approach.

1 Ecosia is a search engine owned by Ecosia GmbH, headquartered in Berlin, Germany.
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In the following, we provide an overview of the current research on the direct 
and indirect impacts of software systems – especially ML models – on GHG 
emissions. We focus on related work on relevant methodologies and frame-
works, as well as initial empirical studies and open-source tools (Chapter 
2). We also briefly describe the development background of the automated 
sustainable product recommendations provided by GCA (Chapter 3) before 
presenting our methodology (Chapter 4) and results (Chapter 5). After discuss-
ing the limitations of this study and identifying avenues for further research 
(Chapter 6), we summarize this study’s main findings (Chapter 7).

2 Scientific Background 

There are several studies, methodologies, and frameworks that address the 
climate impacts of software, in general, and ML models, in particular. In this 
chapter, we briefly describe relevant methodologies and frameworks, empiri-
cal studies and tools, and related work on the indirect impacts of software on 
consumption.

2.1 Approaches to Assessing the Environmental and 
Climate Impact of Software

When evaluating the environmental impact of products and services, research-
ers often conduct LCAs, which represent a systematic method for evaluating 
the environmental impacts over the entire life cycle of a product or service, as 
defined in the International Organization for Standardization standards ISO 
14040 and 14044 (ISO, 2006). Applying a life-cycle perspective to the en-
vironmental impacts of digitalization was the subject of the 73rd Discussion 
Forum on Life Cycle Assessment in 2019 (Itten et al., 2020), with experts 
arguing that LCAs can guide a more environmentally sustainable digital trans-
formation by identifying environmental hotspots within ICT, revealing trade-
offs, monitoring the consequences of digital transformation, and highlighting 
the sustainability potential of substituting digital for non-digital technologies 
with high environmental impacts. Despite these remarks, comprehensive stan-
dards and inventory data remain limited, and the use of a life-cycle approach 
to assess software sustainability remains relatively uncommon.

One study that considers the life-cycle perspective in relation to software 
products was conducted by Kern et al. (2018), who developed a model de-
scribing the causal chains from software products to their impacts on natural 
resources, including energy sources. Their research emphasized that the soft-
ware product contributes measurably to the life cycle of all necessary hard-
ware products (Kern et al., 2018). 
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In another study, Gröger et al. (2018) developed an impact model that illus-
trates the relationship between software use and hardware energy consump-
tion, as well as hardware use (i.e., impact on hardware’s useful life). As part 
of their research, the researchers created a catalog of criteria and indicators for 
assessing the environmental impact of software products, providing an import-
ant contribution for software sustainability research.

In the context of ML-based software, several studies have also developed 
various methods and frameworks to account for direct and indirect impacts 
on GHG emissions. In a recent article, Kaack et al. (2022) introduced a sys-
tematic framework that divides the ML model’s effects on GHG emissions 
into three categories: A) computing-related impacts, B) direct application 
impacts, and C) system-level impacts. All three categories differ significantly 
in terms of their potential emissions. Computing-related impacts include all 
GHG emissions caused by computation, both from electricity used for ML and 
embodied emissions associated with the hardware employed, such as the ex-
traction of resources or the manufacturing of the hardware. Categories B and 
C are more similar. While direct application impacts (B) refer to the “immedi-
ate” GHG emissions impacts associated with the short-term outcomes of ML 
applications, system-level impacts (C) refer to the structural or “system-relat-
ed” GHG effects caused by these applications (Kaack et al., 2022).

This highlights the problem that there is not yet a commonly agreed-upon 
framework for assessing such systems, and it is not very common yet to fol-
low a cradle-to-grave LCA. 

2.2 Empirical Studies Assessing the Energy- and 
Resource-Related Emissions of Software 

Beyond frameworks and methods concerning ML models, several studies have 
measured the impact of training and deploying an LLM across its life cycle.

For example, Wu et al. (2022) measured the carbon footprint of LLMs while 
also considering the life cycle of the system hardware. To measure this impact, 
they provide their own estimates without using an already existing tool. For 
example, they estimate that training GPT-3, a generative language model used 
to produce human-like texts, has a carbon footprint of 600k kg CO2 and that 
about 800k kg of CO2e are emitted during the training and inference of one of 
Facebook’s recommendation and ranking models. 
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Aligning with the framework introduced by Kaack et al. (2022), Luccioni et 
al. (2022) evaluated the computing-related emissions associated with training 
BLOOM, a 176-billion-parameter LLM. They found that training BLOOM ac-
counts for the production of 433,196 kWh. They provide manual estimates of 
the dynamic power consumption during the training of the model and the idle 
power consumption. To obtain emissions estimates associated with the infer-
ence they run the CodeCarbon tool on a Google Cloud Platform. To quantify 
the embodied emissions associated with training the BLOOM model they use 
secondary data from a published LCA of comparable computing equipment. 
Due to a lack of information on their distribution and use, the embodied emis-
sions of the remaining computing infrastructure have not been considered. 
They explain their steps as part of the life-cycle phases Equipment Manufac-
turing, Model Training, and Model Deployment. Meanwhile, Wu et al. (2022) 
provide different breakdowns of their estimates using the categories online 
training, offline training, inference, and operational and embodied energy. 
Operational and embodied energy is another way of defining software’s direct 
impact and the phases of such systems. 

To obtain estimates of the power consumption of ML models and other soft-
ware components, data on the emissions of energy grids and the power output 
of graphics processing units (GPUs) and central processing units (CPUs) are 
needed. To this end, a handful of open-source libraries have been developed 
that attempt to measure the CO2 impact of software, in particular, ML models. 
In addition to CodeCarbon – used by Luccini et al. (2022) – other licensed 
open-source libraries include Cloud Carbon Footprint2, CarbonTracker (An-
thony et al., 2020), Tracarbon3, Green Algorithms (Lannelongue et al., 2020), 
eco2AI (Budennyy et al., 2022), and Pinpoint (Köhler et al., 2020). However, 
Bannour et al. (2021) have recognized that there exists an array of estimates 
between libraries, differences that suggest that calculating such estimates 
requires a holistic understanding of the entire process and addressing other 
hardware aspects, rather than focusing entirely on dynamic timing. There-
fore, despite the existence of these libraries, some researchers still choose to 
produce energy consumption estimates using their own method (Patterson et 
al., 2022; Touvron et al., 2023; Wu et al., 2022). For instance, Patterson et al. 
(2021) measured GPU energy consumption alone, and Selvan et al. (2022) 
used CarbonTracker for its predictive emissions features. This shows there 
isn’t a single widely accepted library.

2 https://github.com/cloud-carbon-footprint/cloud-carbon-footprint
3 https://github.com/fvaleye/tracarbon?tab=readme-ov-file
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2.3 Indirect Environmental Impacts of Software and 
Machine Learning Models 

In addition to the challenges of measuring the energy-related environmental 
impacts of software, especially ML models, several studies also recognize the 
need to consider indirect impacts, including system-level impacts, on sectors 
such as transport, agriculture, and consumer behavior (Kaack et al., 2022; 
Luccioni et al., 2022). 

In a literature review, Horner et al. (2016) assessed the indirect energy impacts 
of ICT and developed a taxonomy of ICT energy impacts that standardizes 
the terms used in the literature. Overall, they found that the actual net energy 
effect is difficult to assess and that indirect energy effects are very sensitive 
to scoping decisions and assumptions made by the analyst. Additionally, they 
observed that uncertainty increases as the impact scope broadens. They also 
noted broad agreement among researchers that although ICT offers great 
potential for energy savings, realizing this potential depends heavily on the 
actual details of deployment and user behavior (Horner et al., 2016).

A potential system-level impact occurs when ML technologies cause broader 
lifestyle changes in society, such as by altering demand for goods and ser-
vices. Behavior research suggests that digitization has the potential to encour-
age pro-ethical or pro-sustainable choices by consumers (Cochoy et al., 2017; 
Frick et al., 2019; Fuentes & Sörum, 2019). In contrast, an example of a likely 
negative impact on global GHG emissions is ML algorithms such as recom-
mender systems or personalized ads in search engines, which may encourage 
increased consumption of goods and services with embodied GHG emissions 
(Chen, 2022; Fleder et al., 2010). In the general context of online advertising, 
the success with which advertising in applications converts users is evaluated 
using the conversion rate (CVR). The CVR refers to the percentage of users 
who saw an in-application ad, clicked on it, and converted through a prede-
termined action. Irvine (2021) analyzed thousands of shopping ads on Google 
and Bing and found that the average CVR across all industries was 1.91 % for 
Google Shopping ads and 1.74 % for Bing Shopping ads.



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 904

3 Study Focus and Research Questions

Ecosia provides a shopping vertical where users can search for and eventually 
purchase products from various retailers. To promote sustainable consump-
tion, the GCA project has developed additional features that are presented 
to the platform’s users in the shopping vertical. One main feature is the au-
tomated recommendation of sustainable products. The GCA considers prod-
ucts to be sustainable if they credibly meet higher social and environmental 
sustainability standards than comparable products. To determine a product’s 
sustainability, the GCA evaluates and scores products against a set of criteria 
described in previous GCA research (Hoffmann, 2022; Lehmann, 2021).

As Figure 1 shows, the software enables an automated change from A) dis-
playing regular shopping results in Ecosia’s shopping vertical to B) allocating 
the first row to recommend sustainable products that are highlighted through 
the “sustainability” label. While the infrastructure and basic features of the 
shopping vertical remain unchanged by the GCA software, users searching for 
specific products in Ecosia’s shopping vertical are now shown four sustainable 
products above the regular product recommendations.

Figure 1: A) Display of regular shopping results in Ecosia’s shopping verti-
cal. B) Display of sustainable alternatives to shopping results in Ecosia’s 
shopping vertical.
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The automated display of sustainable product alternatives was mainly 
achieved by creating the GreenDB (Jäger et al., 2022), a product-based sus-
tainability database. The GreenDB is a PostgreSQL database that is updat-
ed weekly with an automated pipeline available on Github4. The GreenDB 
searches for sustainable products from various retailers (Amazon, OTTO, 
Zalando) and provides up-to-date information about the products. The data-
base was built during the first phase of the GCA project, long before this study 
began. Because some of the online retailers do not always provide credible 
sustainability labels for the products they offer, we also run an ML-based ser-
vice in addition to the GreenDB to increase the number of sustainable prod-
ucts. These components together – Ecosia’s shopping vertical, the GreenDB, 
and the additional ML-based service – constitute the software examined in this 
study.

The software currently provides automated sustainable product recommen-
dations for 19 different product categories, covering fashion and electronics 
products. In this study, we focus on the smartphone product category, the 
most-searched-for electronic product in Ecosia’s shopping vertical. Further-
more, although previous studies have found that smartphones are responsible 
for more GHG emissions than other devices (e.g., laptops), more sustainable 
smartphone consumption (e.g., extending the replacement cycle) has the 
potential to reduce annual GHG emissions in the European market by up to 
14.12 tons of (EEB, 2019). Thus, when earlier studies in the GCA research 
project defined a set of criteria that a smartphone must meet to be considered 
more sustainable, criteria that indicate a smartphone’s potential to last longer 
(e.g., easy repair) were used as key indicators (Hoffmann, 2022).

However, to quantify the effects of sustainable product recommendations, 
both user purchasing decisions and the software’s emissions should be consid-
ered. Given previous findings indicating that sustainable purchasing behavior 
can be influenced (Cochoy et al., 2017; Frick et al., 2019; Fuentes & Sörum, 
2019), this study conducts a detailed step-by-step analysis to evaluate the 
emissions associated with the energy required to compute automated sustain-
able shopping recommendations, as well as potential system-level impacts by 
evaluating the indirect effects of influenced consumption decisions and their 
embodied CO2e emissions. We aim to assess the system-level impacts of the 
GCA’s sustainable shopping recommendations and relate them to direct com-
puting-related emissions caused during the development, execution, and usage 
of the software. Hence, this study considers emissions caused during the soft-
ware’s development, execution, and usage and compares them to estimates of 
the software’s contribution to emissions avoidance. This leads to the following 
research questions (RQ):

4 https://github.com/calgo-lab/green-db
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RQ1: What is the computing-related GWP of the GCA’s automated sus-
tainable shopping recommendations, and how does this compare to the 
potential indirect emissions avoidance? 

RQ2: Which steps in the software system have the greatest potential to 
further reduce the software’s GWP?

4 Methodology

For this interdisciplinary study, we adopt a life-cycle perspective, guided by the 
standard ISO LCA 14040 / 44 (DIN EN ISO 14044, 2006). To obtain the needed 
inventory data, we use various methods and tools, from carbon footprint mea-
surements for ML models to consumer behavior research and secondary data 
from published LCAs. In this chapter, we describe our methodological approach, 
including our measurement setup and system boundaries.

The impact of ML-based software can be assessed by measuring direct and 
indirect emissions. Direct emissions, also referred to as computing-related 
emissions, include embodied emissions, which describe emissions related to 
hardware production. This also includes emissions resulting from dynamic power 
consumption, which includes the active processes, that is, when the software is 
being executed continuously and the hardware is actively used. Finally, emissions 
resulting from idle power consumption – which refers to when the hardware is 
switched on (i.e., powered up) but is not actively being used by the software, as 
is the case when the hardware is cooling down (Luccioni et al., 2022) – are also 
considered as direct emissions. To assess our software’s direct emissions, we only 
measure dynamic power consumption, which only includes instances where all 
steps are being actively executed. Section 4.1 further describes the scope of our 
measurement. Note that we have decided not to assess embodied emissions due 
to a lack of available data.

To estimate the impact on overall GHG emissions associated with displaying au-
tomated sustainable smartphone recommendations in Ecosia’s shopping vertical 
over the course of a year, we observe three main tasks. First, we assess the GHG 
emissions caused by the development, execution, and use of the recommenda-
tions. Second, we assess the potentially avoided GHG emissions resulting from 
consumer behavior influenced by sustainable product recommendations. Third, 
we compare and evaluate both outcomes.
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4.1 Use Case Description and Scope Definition

The purpose of the software is to recommend four sustainable5 smartphones to 
users of Ecosia’s shopping vertical over the span of one year (365 days). Accord-
ing to the ISO standard for conducting LCAs, 14044:2006, a functional unit must 
be defined. The functional unit is the quantified performance of a product system 
for use as a reference unit (DIN EN ISO 14044, 2006). To assess our software’s 
GWP, we define the following functional unit: Computation of four automat-
ed sustainable smartphone recommendations daily over a 365-day period 
(1,460 total recommendations).

The software assessed in this study comprises several components required to 
enable automated sustainable product recommendations. Collecting the required 
components – which all require energy flows to perform their respective tasks 
– is in the following also referred to as the assessed software, with the compo-
nents referred to as “steps.” Running our assessed software then means running 
its steps once, weekly, or daily depending on the unique step requirement. For 
this study, we assess the energy flows that enter our assessed software and their 
respective GHG emissions. To estimate the related computing emissions caused 
by running our assessed software, we measure the energy consumed (kWh) at 
each step. Figure 2 visualizes the assessed software and the life-cycle phases con-
sidered. Unlike cradle-to-grave LCAs, we focus on the energy-intensive parts of 
the software development and execution, in particular, the ML training and usage 
phase of the software. The embodied emissions, that is, emissions caused during 
the hardware’s life cycle, preceding components are excluded from this study due 
to a lack of available data. Also, the software development costs related to imple-
menting components not related to ML training are excluded because they incur 
negligible costs compared to the energy demands of the software execution and 
ML model training.

5 Within the GCA’s green shopping recommendations, smartphones are evaluated for their sustainability based on a set of 
criteria. The primary criterion for recommending sustainable smartphones is their potentially longer lifespan, which can be 
improved by improved repairability. Further information about the approach is described in the working paper by Hoff-
mann (2022). 



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 1304

Figure 2: Included and excluded life-cycle phases and data sources.

All steps 1 – 6 outlined in Figure 2 contribute to the final computing-related GHG 
emissions, and their energy consumption is estimated using the CodeCarbon 
software package (green boxes). The user behavior associated with consumption 
is measured by the Click Data (pink boxes), and the longer smartphone replace-
ment cycle estimates obtained from published LCAs (purple boxes) contribute 
to the system-level impacts (i.e., avoided GHG emissions). The foundation is 
the GreenDB created in steps 1 and 2, which involves scraping product pages 
from various online retailers (step 1) and extracting product information (step 2), 
including sustainability certificates. Although all historical products are stored in 
GreenDB, we only use the latest weekly scraped products for sustainable product 
recommendations because some products might become outdated, unavailable, or 
receive a different price over time. 

However, some retailers do not always provide sustainability information about 
their sustainable products. To address this, we introduce an additional step (step 
5) that matches the products in our GreenDB with external resources (websites, 
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such as iFixit6, TCO7, and French Repairability Index8) that provide sustainability 
information for electronic products. To extract the information of interest from 
these resources, we apply step 3, which sees us extract product information. To 
match products from external resources to our GreenDB, we finetune an already 
pre-trained multilingual Sentence Transformer 9 (step 4) on the Product Data Cor-
pus and Gold Standard for Large-Scale Product Matching, a publicly available 
dataset from Web Data Commons (WDC)10. We train the model for three epochs, 
using the default parameters for the optimizer. The model is then used in step 5 – 
as a service after weekly product extraction – to match the products without sus-
tainability information with the external resources data (extracted in step 3). As a 
final step, we evaluate products based on their sustainability information, classify 
them into different groups depending on the product category, rank them based 
on their sustainability score, and filter the top ten products per category (step 
6). Four of the top-ranked products in each product category appear in Ecosia’s 
Shopping Vertical with a simple sustainability label. 

Table 1: Steps in our software’s life cycle, including their occurrence fre-
quency, goal, and reference name.

Step Occurrence What is done Referred to as

1 Once
Product pages scraped from online 
retailers

GreenDB

2 Once Product information extraction GreenDB

3 Once
Information extraction from external 
resources

External Certificates

4 Once Training our entity matching model EM Training

5 Weekly
Applying entity matching with the 
model trained in step 4

Entity Matching 
(EM)

6 Daily
Product gathering and ranking on the 
shopping vertical

Ecosia display

6 https://www.ifixit.com/
7 https://tcocertified.com/product-finder/
8 https://www.indicereparabilite.fr/
9 https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
10 http://webdatacommons.org/



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 1504

Cut-off criteria
Due to the scope of the study and data availability, we do not consider adopt-
ing several possible steps: 

 \ Establishing and maintaining the GreenDB and establishing the entity 
matching training and inference code: This step is excluded because the 
process happened in an earlier phase of the project (i.e., before this study 
was conducted). 

 \ Retrieving the external resources in step 3: The external resources were 
downloaded from the internet, a step not measured in code.

 \ Maintaining the software: Maintenance is harder to estimate because it 
can involve different machines, and maintenance tasks can vary from 
minutes to days.

 \ Establishing and maintaining the entire shopping vertical: We do not 
have access to this part of the system because it takes place on Ecosia’s 
side.

 \ Energy consumption by the user: We do not measure this because we do 
not have access to users’ device information.

Listing 1: Our cluster and local system specifications.

CLUSTER NODE 
OS Linux-5.4.0-81-generic-x86_64-with-glibc2.31 
Python Version 3.10.8 
CPU 128 x AMD EPYC 7502 32-Core Processor 
GPU 1 x NVIDIA A100-PCIE-40GB

LOCAL MACHINE 
OS macOS-12.6-x86_64-i386-64bit 
Python Version 3.10.9 
CPU 2 x Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

Measurement setup
Every step except step 4 is performed on a local machine. We have chosen our 
local machine for its more isolated environment, recognizing that the esti-
mates on our cluster nodes may be confounded with other workloads running 
on the same physical node.
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Steps 1 and 2 are conducted on our self-hosted Kubernetes cluster at BHT in 
Berlin, Germany. However, measuring the total impact on our cluster would 
be more complicated because it involves several services running together. 
Therefore, we deployed the entire scraping and extraction pipeline on a local 
machine to measure its impact. For step 1, we use Scrapy11, an open-source 
Python framework for extracting data from websites; for step 2, we use 
Extruct12, a Python library for extracting data from HTML markup. The soft-
ware is completely written in Python. We store the final data in a Postgresql13 
database. Step 6 is run daily by Ecosia. Because we do not have access to this 
step of the assessed software, we simulate this step on our local machine in 
Berlin and measure the estimates accordingly. In step 4, we finetune a pre-
trained model on a cloud computer, with the cluster node specifications given 
in Listing 1. For the training component, we use an isolated node, meaning 
a node not shared with other users but with some cluster-related background 
processes. Step 5 includes inference on the EM model and is executed on the 
cluster once a week after finishing scraping and extraction.

4.2 Computing-Related Impact: Approach, Tools, and 
Resources

For this study, we attempt to estimate the energy used in the form of kWh for 
as many steps as possible and translate those to GHG emissions. For those 
steps for which we cannot produce estimates due to lack of access, data avail-
ability, or time, we use estimates based on published research. Furthermore, 
we assume that the user looks for products on the Ecosia shopping vertical 
independently of the sustainable shopping recommendations. Therefore, we 
only consider the emissions that are caused by the automated sustainable 
smartphone recommendations.

Regarding the choice of a tool for calculating the CO2e for all steps, among the 
libraries listed in Chapter 2, CodeCarbon is one of the newest and best-main-
tained open-source libraries (Selvan et al., 2022). Based on its popularity and 
following the common practice of choosing a well-maintained software and 
tool, we use CodeCarbon to measure the energy consumed at each step of 
our assessed software. The tool provides separate measurements for CPU and 
GPU. For the CPU estimates on Linux, it uses rapl; on Mac and Windows, it 
uses Intel Power Gadget for CPU estimates and pynvml for GPU estimates. 
However, for the final CO2e estimates, we only use the power consumption (P) 
estimates of the computing infrastructure, given in kilowatt-hours (kWh). The 
relationship between P and reported CO2e emissions is modeled as:

11 https://scrapy.org/
12 https://pypi.org/project/extruct/
13 https://www.postgresql.org/
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CO2e = P * 485 g/kWh (Eq. 1)

To determine the associated GHG emissions, we use the values for the carbon 
intensity of the German energy mix for the year 2021, listed in Eq. 1. We use 
data from the German Federal Environment Agency, which estimates the CO2 
emission factor 14 of German electricity consumption considering upstream 
emissions (Icha & Lauf, 2022). We do not use an emission factor that consid-
ers the carbon intensity of the actual energy mix used by GCA. To obtain the 
final estimates, we apply CodeCarbon to subsets of data and then scale the 
numbers according to the average number of products we use weekly or daily 
in the smartphone category. For the steps that are measured on a local ma-
chine, CodeCarbon uses its fallback mode with an approximation by retriev-
ing the thermal design power (TDP) for our hardware from a database15. The 
specifications for the local machine appear in Listing 1. 

To estimate steps 1 and 2 (GreenDB), we measure the energy required for a 
sample of 130 product pages and then scale these estimates to 700 products, 
the weekly average number of scraped smartphones. These two steps are mea-
sured together because the two services in our GreenDB pipeline are always 
run together. For steps 3 and 4, we run CodeCarbon over the original code and 
data used in our assessed software. In steps 5 and 6, we estimate the energy 
for 700 products, the weekly average number of products in the smartphone 
category. All weekly and daily estimates are finally scaled by the number of 
repetitions, that is, 52 and 365. The final energy consumption estimates are 
reported on an annual basis, and we estimate an annual average of 36,400 
scraped smartphones.

4.3 System-Level Impacts: Avoided GHG Emissions

To estimate the potential GHG emissions that could be avoided due to sus-
tainable smartphone recommendations, we draw upon existing behavioral 
research, actual click data for sustainable products recommended by the GCA, 
and published smartphone LCAs. The estimate of avoided emissions (A) is 
summarized by the following formula:

14 The emission factor is derived from the German energy mix and is only a hypothetical factor used for this study. In reality, 
all functions performed by the GCA that require energy on Ecosia’s side use only energy from renewable sources and there-
fore have a lower emission factor.

15 https://mlco2.github.io/codecarbon/methodology.html
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A=P*S (Eq. 2) 

A = Avoided emissions (range in CO2e) 
P = Number of purchased sustainable smartphones  
S =  CO2e of unsustainable smartphones – CO2e of sustainable smartphones 

(range of avoided CO2e)

We do not have data regarding the purchased sustainable and unsustainable 
smartphones from Ecosia’s shopping vertical. To address this data gap, we 
treat our sustainable product recommendations similarly to ads appearing in 
the context of comparable online search engines and use published second-
ary data about how successfully those ads convert user behaviors, that is, the 
CVR. Irvine (2021) observed an average CVR of 1.91 % for Google Shopping 
ads and 1.74 % for Bing Shopping ads. Based on those findings, we assume a 
CVR of ~0.018 (~1.8 %) for sustainable product recommendations on Ecosia. 
To obtain an estimate of the number of sustainable smartphone purchases (P) 
influenced by our software, we multiply the CVR by measured click-throughs. 
Because our functional unit evaluates the impact of sustainable smartphone 
recommendations over the course of a year, we multiply the number of click-
throughs by three because the data provided spans only 4 months. This is 
summarized by the following formula:

P (Number of purchased sustainable smartphones) = CVR x Click Throughs 
(Eq.3)

Finally, we need to estimate the GHG emissions that can be avoided if a 
purchase decision is made against a non-recommended smartphone and for a 
sustainable recommended alternative (S). However, the software constantly 
changes its smartphone recommendations during the period studied, based 
on weekly calculated sustainability stores (Step 6). Additionally, we have no 
information about the smartphones (and their emissions) that the user actually 
purchased or would have instead if the feature (i.e., sustainable product rec-
ommendations) had not been added to the shopping vertical. 

Nonetheless, as Chapter 3 describes, the main criterion for recommending sus-
tainable smartphones is their assumed longer lifespan based on defined criteria, 
such as high repairability scores from recognized repairability indices (Hoff-
mann, 2022). Therefore, we focus here on the common factor of longer lifespan 
of recommended smartphones compared to non-recommended smartphones. 
We use secondary data from published LCAs and comparisons of LCAs that 
evaluate how emissions from smartphones change when their replacement 
cycle is extended under different scenarios. We search the Web of Science and 
Google Scholar for relevant studies. To be considered, studies have to be open 
access, written in English, and not published before 2018 (due to the rapid evo-
lution of smartphone technology). We evaluate multiple studies, selecting sce-
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narios that quantify avoided carbon emissions due to an extended smartphone 
replacement cycle from two to three years to up to five years through various 
design (e.g., modular design), use, or repair scenarios. We apply these estimates 
to our smartphones with similar sustainability characteristics with emissions for 
a replacement cycle of up to five years. We do not assert that these studies and 
their respective scenarios represent an exhaustive list.

We identify a total of 12 lifespan extension scenarios from four different 
studies (Cordella et al., 2021; Pamminger et al., 2021; Sánchez et al., 2022; 
Schneider et al., 2018), with details presented in the Appendix (Table A1). 
The scenarios capture different approaches and consider the effect on differ-
ent smartphones in regard to how extending the average replacement cycle 
from two to three years to up to five years could reduce GHG emissions due 
to repairability or modular design and how these different characteristics 
may impact the overall CO2e of the smartphone during its life cycle. Due to 
the different study designs, methods, and scenarios evaluated, the identified 
LCAs cannot be compared directly. Hence, the goal of this approach is not to 
compare the twelve scenarios but to identify a range of estimates from which 
to derive the magnitude of potentially avoided emissions. The studies differ, 
as do the recommended sustainable smartphones and their potentially unsus-
tainable alternatives. Estimated emissions avoided by longer lifespans ranged 
from 14.97 kg CO2e to 34.4 kg CO2e.

Finally, we add the measured and retrieved data into the equations to obtain 
the quantified direct and indirect GHG emission data associated with the life 
cycle of our software and its different steps.

5 Results 

This study reports several outputs that we quantify as GWP, measured in 
terms of kg CO2e. In this chapter, we first present the results for the measured 
energy consumption and the consequent CO2e emissions of all steps included 
in our assessed software (steps 1 – 6 in Figure 2). Then, we present the range 
of potential GHG emissions avoidance associated with extended smartphone 
lifespans (drawn from existing studies), followed by a comparison of both 
emissions ranges, from which we derive the estimated net GWP of GCAs for 
sustainable smartphone recommendations over the one-year period.
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5.1 Computing-Related GWP of GCAs Sustainable 
Smartphone Recommendations 

Table 2 shows the measured kWh for all steps and the consequent CO2e emis-
sions. For a more accurate estimate, we conducted our experiments ten times 
and obtained a range of energy consumptions per step rather than just focusing 
on point estimates from CodeCarbon. Of the six steps of our assessed soft-
ware, the weekly scraping of products and extraction of product information 
(GreenDB; step 1 and 2) require the largest amount of energy, followed by EM 
training. The total estimated GWP associated with running the software ranges 
between 1.282 kg CO2e and 1.289 kg CO2e.

Table 2: The annual climate impact of each step of the assessed software.

Step kWh (Median)
kWh 
(25th/75th quantile) 

kg CO2e 
(25th/75th quantile) 

1/2. GreenDB 1.515 1.514 / 1.517 0.734 / 0.736

3. External certificates 0.00001 0.000010 / 0.000012 0.000005 / 0.000006

4. EM Training 1.029 1.027v1.031 0.498 / 0.5

5. EM 0.090 0.081 / 0.096 0.039 / 0.046

6. Ecosia’s reranking 0.019 0.018/0.019 0.009/0.01

Total 2.653 2.643 / 2.658 1.282 / 1.289

5.2 System-Level Impacts

Sustainable smartphone recommendations were displayed on 28,287 Ecosia 
Shopping searches between June 1 and September 30, 2022. Of those im-
pressions, 694 received click-throughs. The sustainable smartphone recom-
mendations over the course of a year resulted in 2082 clicks on sustainable 
smartphones. With an average CVR of ~1.8 %, we would expect to trigger ~37 
sustainable smartphone purchases that otherwise would not have happened. 
The ratio of the scenarios was multiplied by the factor for estimated influ-
enced consumption decisions (Appendix), enabling us to obtain a ratio for the 
estimated impact of potentially avoided emissions by influencing consumers 
to purchase smartphones with higher repairability. Multiplied by the potential 
avoided emissions retrieved from the LCA studies – all ranging between 14.97 
kg CO2e and 34.4 kg CO2e – we calculate a potential to avoid between 553.89 
and 1272.8 kg CO2e annually by recommending sustainable smartphones.
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5.3 Net GWP Estimates

As with the actual CO2e emissions generated by our system, we also provide a 
range of figures for the reduced CO2e emissions from the estimated purchase 
of 37 more sustainable smartphones over the course of one year.

Figure 3: Annual range estimate of the amount of CO₂ caused by our assessed 
software system (1.282–1.289 kg), and the amount of CO₂e (553.89–1272.8 kg) 
avoided by influencing consumer behavior.

As Figure 3 shows, the annual emissions generated by the software range from 
1.282 to 1.289 kg CO2e and are lower than the estimated emissions that could 
be avoided by encouraging the purchase of sustainable smartphones, which 
range from 553.89 to 1272.8 kg CO2e. Even the lowest estimate of emissions 
avoided is 553.89 kg CO2e, which is about 429 times higher than the highest 
estimate of total emissions caused by the development, execution, and use of 
the software. Furthermore, influencing just one consumer to buy a more sus-
tainable smartphone outweighs the GWP of the whole production system.
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6 Discussion

This study has investigated the direct GHG emissions associated with the use 
of a particular software and its components, measuring and comparing the 
calculations to estimates of GHG emissions potentially avoided due to the 
indirect system-level impacts of the software. This chapter first discusses the 
results and associated limitations of the computing-related emissions mea-
sured before discussing the same for the assessed system-level indirect emis-
sions and, finally, highlighting further research avenues.

6.1 Computing-Related Impacts

The total GWP associated with running the sustainable smartphone recom-
mendations, as an additional feature for Ecosia’s shopping vertical, ranges 
between 1.282 kg CO2e and 1.289 kg CO2e. However, a lack of available data 
and the scope of this study means we have excluded several steps. Unlike Wu 
et al. (2022), we have not included emissions generated from the production 
of hardware used, which limits the completeness of our emissions measure-
ments. If these were added, emissions from software would likely increase. 
In contrast to Kern et al. (2018), we also have not accounted for the potential 
additional impacts associated with maintaining the software. Instead, we have 
focused on the dynamic time of the hardware, that is, we do not consider idle 
time, cooling of the system, or production of the hardware itself. Furthermore, 
we have only simulated some processes, and we have not measured them on 
the original computers on which they were used. Therefore, the actual direct 
emissions caused by the software’s life cycle are likely higher than estimates. 
Further research should consider more phases of the product life cycle and 
investigate steps taking place during the production and use phases. 

The step associated with the most emissions is the GreenDB, the weekly 
scraping of products and extraction of product information, which consumes 
between 1.514 and 1.517 kWh (0.734 and 0.736 kg CO2e) annually. A sim-
ple approach to reducing its impact would be to reduce the annual number 
of scrapings and repeat them, for example, every 10 days, instead of weekly. 
This would reduce energy consumption by almost 30 %. However, this could 
lead to more outdated product information (i.e., prices and availability). Our 
redundant weekly product scraping and extraction steps, where we scrape the 
same products repeatedly to maintain up-to-date product information, lead to 
the trade-off between having an up-to-date product database and reducing the 
impact on GHG emissions. Therefore, we aim to provide an optimized solu-
tion that sees only part of the product information updated for existing prod-
ucts in our database. This approach, where only partial information is updated, 
might be a better solution in the long run, both for the time needed to perform 
the GreenDB step and for the environmental impact in general.
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With an estimated GHG value between 0.498 and 0.5 kg CO2e, training the 
EM model is the step representing the second-largest volume of GHG emis-
sions. Due to the nature of EM training, we did not break down the indirect 
emissions caused by training the EM model across all 19 product categories. 
To achieve the required results, the EM needed to be trained on all 19 product 
categories, but it could potentially be used for even more categories. There-
fore, we decided against allocating associated emissions to specific categories. 
For further research, it would be of interest to expand the assessed system 
and conduct this approach for all product categories currently offered by the 
software. In this way, the impact of the trained EM model remains the same in 
the other categories, meaning it has less impact on the assessment. Addition-
ally, in line with Santarius et al. (2022), software products should avoid data 
transfers that are not necessary for a service to provide its intended functional-
ity. For our case, provided the primary product information from retailers does 
not contain information regarding their reparability, using the EM approach 
continues to be required, despite its emissions cost.

Although we used an LLM for our EM, we aimed to reduce the energy de-
mands by not performing hyperparameter optimization and used the default 
hyperparameters proposed by Lacoste et al. (2019), Patterson et al. (2021), 
and Wu et al. (2022). We have also provided transparent information about 
our results, hardware, location, and overall methodology. However, for the 
EM, we could have used a simpler model instead of an LLM. If there is a 
reasonable trade-off between GHG emissions and the high performance of the 
model, this can significantly reduce the software’s overall GHG emissions. 
Another approach would be to choose a cloud region with a lower carbon in-
tensity when performing hardware-intensive operations, as done in one study 
in the context of AWS16, Azure17, and GCP18 in Quebec, Canada (Henderson 
et al., 2022). Furthermore, during the EM model prototyping process, addi-
tional computing-related emissions have not been accounted for. This process 
requires additional work that may involve training and comparing multiple 
candidate models that do not necessarily meet the final system design require-
ments at this stage, nor can they be selected as the final model (Schelter et al., 
2015). Thus far, we have only recognized this in the work of Wu et al. (2022), 
who recognize that they spend 10 % of their energy on experimentation in 
their AI infrastructure processes.

16 https://aws.amazon.com/
17 https://azure.microsoft.com/en-us
18 https://cloud.google.com/
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Another factor that highly influences computing-related impacts – in partic-
ular, the emissions caused by dynamic power consumption – is the energy 
mix. We have derived the GHG emissions factor from the German energy 
mix for 2021 as published by the German Federal Environment Agency (Icha 
& Lauf, 2022). Using the same system run in, for example, France – which 
has recorded lower carbon intensity of ~56 g CO2e / kwh (Henderson et al., 
2022) – would significantly lower emissions. According to a 2030 scenario 
commissioned by the German Federal Environment Agency, which evaluates 
instruments to achieve the German climate protection target of 65 % of GHG 
emissions by 2030, emissions from the German energy mix could decrease to 
81.8 g CO2 / kwh by 2030 by increasing the share of renewables (Repenning 
et al., 2023). This, in turn, would lead to a reduction in the computing-related 
emissions of our software.

6.2 System-Level Impacts

With an estimated impact of 37 influenced smartphone purchase decisions 
over the course of one year, the impact of automated sustainable product 
recommendations on sustainable purchase decisions is rather small. However, 
this could be partly due to the way that recommendations are visualized in 
Ecosia’s shopping vertical (see Figure 1). In the current version, users are only 
shown a portion of the products classified as sustainable, and the sustainability 
information is reduced to the simple statement “sustainable.” This deprives 
users of detailed information about production processes and product charac-
teristics (information asymmetry) (Gossen et al., 2022). This limits the rele-
vance and practicability of the recommendations, potentially explaining the 
low click rates. Furthermore, previous research has shown that behavior is not 
based purely on rational arguments and objective information. Instead, every 
consumption decision can also contain social and emotional elements. That is, 
people do not always consciously think about their actions and decisions, nor 
do they always have access to all the information they need to do so (Klein 
& O’Brien, 2018). Future research should obtain more accurate information 
about the number of actually influenced consumption decisions associated 
with the GCA’s sustainable shopping recommendations. It is also important 
to stress that every product – even the most “sustainable“ choice – produces 
emissions, which suggests that the most sustainable recommendation would be 
no consumption at all. Additionally, other aspects that affect the lifespan of the 
product – such as usage behavior and user interests – have not been consid-
ered, nor have possible rebound effects of sustainable smartphone recommen-
dations been assessed. This suggests that it might be promising to complement 
the GCA with sufficiency-oriented consumption recommendations (Gossen et 
al., 2023) and to evaluate possible additional emissions due to rebound effects 
in future studies.
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Another important limitation relates to the estimates used to quantify the 
assumed avoided emissions. The estimation of potentially avoided emissions 
ranges from 553.89 to 1272.8 kg CO2e. We have not been able to obtain data 
concerning the actual consumption decisions made or the differences in emis-
sions between the smartphones actually purchased and the smartphones con-
sumers would have purchased in the absence of sustainable product recommen-
dations. Because of these limitations, considerable uncertainty looms behind 
the assumed positive effects. Nonetheless, the calculations provide a first esti-
mate of the potential impact of the recommendations. Future research would 
need to further develop this approach. We recognize that a direct comparison 
between the different LCAs used to assess different scenarios for different 
smartphones and under different assumptions about potential pathways to ex-
tend their replacement cycle is not possible due to the different methodologies 
used. However, we consider that using them as an indicator of a potential range 
of avoided emissions represents a useful first step towards quantifying the 
potential indirect system impact of the software. Additionally, the results can 
provide an overview of the range of CO2e potentially avoided by promoting 
products with higher repairability and, thus, potentially longer lifespans. These 
assumptions also align with the European Commission’s recent proposal re-
garding the “Right to Repair.” That proposal aims to promote repair as a more 
sustainable consumption option that contributes to climate and environmental 
goals under the European Green Deal (European Commission, 2023).

Because the software is currently being developed for 18 product categories 
other than smartphones, it would be promising to repeat this study for other 
product categories, especially given that product categories (e.g., T-shirts) may 
have lower emissions savings potential than smartphones. 

Broadly, this study’s findings recognize the potential to directly and indirectly 
avoid GHG emissions by presenting sustainable shopping recommendations 
as an additional feature for a shopping vertical. However, assessing these di-
rect and indirect emissions is based on many assumptions, rendering the study 
subject to limitations due to the system boundaries we have defined and the 
data sources we have used.

7 Conclusion

This study has combined and tested different tools and methods to measure 
the net impact of software leveraging state-of-the-art ML technology to foster 
more sustainable shopping behavior. In contrast to previous studies that have 
investigated the GHG emissions of singular ML components, we have eval-
uated the net effect of sustainable shopping recommendations in a detailed 
step-by-step manner in a real-world application. 
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Our study’s main contributions are twofold. First, our approach shows how 
existing methodologies and tools can be combined to assess the direct and 
indirect impacts of novel emerging energy-intense ML software components. 
Future studies can use this approach as an example of measuring such a sys-
tem, even with limited data and under limited system conditions, and of gath-
ering quantified impact data. Second, we have conducted an empirical study in 
an example application, the GCA, deployed in the context of the search engine 
Ecosia. Our results demonstrate that the net effect of sustainable shopping 
recommendations can be positive, despite the use of modern ML technology. 
These findings demonstrate that software can indirectly contribute to reducing 
global GHG emissions if designed carefully. However, we have also found 
that quantifying the GHG emissions caused by the software is measurable to 
some extent, while the assumed impact on sustainable consumption is based 
on a broader range of estimates based on mostly secondary data sources (due 
to not having access to actual data). Notably, conducting our own LCA for 
each recommended smartphone was outside of the scope of our study. None-
theless, assessing the environmental impact of the development of software 
and ML tools and the integration of environmental aspects early in the design 
process represents an important contribution on its own. Because all measured 
GHG emissions result from the software’s energy consumption of the source, 
the same assessed software powered by a different energy mix could cause 
very different GHG emissions. 

We encountered many methodological challenges in assessing the climate im-
pact of ML-based software and collecting the necessary data, in part due to the 
lack of established standards. Therefore, it is essential for policymakers and 
researchers to contribute to creating standards for assessing the carbon foot-
print of software products. Our study’s results show that the software has the 
potential to indirectly avoid more emissions than it causes, with changes along 
different steps of the software potentially amplifying this.



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 2704

References

Anthony, L. F. W., Kanding, B., & Selvan, R. (2020). Carbontracker: Track-
ing and Predicting the Carbon Footprint of Training Deep Learning 
Models (arXiv:2007.03051). arXiv. http://arxiv.org/abs/2007.03051

Amodei, D., & Hernandez, D. (2018, May 16). AI and compute. OpenAI. 
https://openai.com/blog/ai-and-compute/

Andrae, A. S. G., & Edler, T. (2015). On global electricity usage of communi-
cation technology: Trends to 2030. Challenges, 6(1), 117 – 157.  
https://doi.org/10.3390/challe6010117

Arushanyan, Y., Ekener-Petersen, E., & Finnveden, G. (2014). Lessons 
learned – Review of LCAs for ICT products and services. Computers in 
Industry, 65(2), 211 – 234. https://doi.org/10.1016/j.compind.2013.10.003

Arvesen, A., Bright, R. M., & Hertwich, E. G. (2011). Considering only 
first-order effects? How simplifications lead to unrealistic technology op-
timism in climate change mitigation. Energy Policy, 39(11), 7448 – 7454. 
https://doi.org/10.1016/j.enpol.2011.09.013

Bannour, N., Ghannay, S., Névéol, A., & Ligozat, A.-L. (2021). Evaluating the 
carbon footprint of NLP methods: A survey and analysis of existing tools. 
Proceedings of the Second Workshop on Simple and Efficient Natural Lan-
guage Processing, 11 – 21. https://doi.org/10.18653/v1/2021.sustainlp-1.2

Bastida, L., Cohen, J. J., Kollmann, A., Moya, A., & Reichl, J. (2019). Explor-
ing the role of ICT on household behavioural energy efficiency to miti-
gate global warming. Renewable and Sustainable Energy Reviews, 103, 
455 – 462. https://doi.org/10.1016/j.rser.2019.01.004

Belkhir, L., & Elmeligi, A. (2018). Assessing ICT global emissions footprint: 
Trends to 2040 & recommendations. Journal of Cleaner Production, 177, 
448 – 463. https://doi.org/10.1016/j.jclepro.2017.12.239

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On 
the dangers of stochastic parrots: Can language models be too big? Pro-
ceedings of the 2021 ACM Conference on Fairness, Accountability, and 
Transparency, 610 – 623. https://doi.org/10.1145/3442188.3445922

Budennyy, S., Lazarev, V., Zakharenko, N., Korovin, A., Plosskaya, O., Dim-
itrov, D., Arkhipkin, V., Oseledets, I., Barsola, I., Egorov, I., Kosterina, 
A., & Zhukov, L. (2022). Eco2AI: Carbon emissions tracking of machine 
learning models as the first step towards sustainable AI. arXiv. http://arx-
iv.org/abs/2208.00406



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 2804

Chen, Y. (2022). Analysis on the impact of recommender systems on consum-
er decision: Making on China’s online shopping platforms. 2022 6th In-
ternational Conference on E-Commerce, E-Business and E-Government, 
272 – 276. https://doi.org/10.1145/3537693.3537734

Clément, L.-P. P.-V. P., Jacquemotte, Q. E. S., & Hilty, L. M. (2020). Sources 
of variation in life cycle assessments of smartphones and tablet comput-
ers. Environmental Impact Assessment Review, 84(106416). 
https://doi.org/10.1016/j.eiar.2020.106416

Cochoy, F., Hagberg, J., Petersson McIntyre, M., & Sörum, N. (Eds.). (2017). 
Digitalizing consumption: How devices shape consumer culture. Rout-
ledge. https://doi.org/10.4324/9781315647883

Cordella, M., Alfieri, F., & Sanfelix, J. (2021). Reducing the carbon foot-
print of ICT products through material efficiency strategies: A life cycle 
analysis of smartphones. Journal of Industrial Ecology, 25(2), 448 – 464. 
https://doi.org/10.1111/jiec.13119

EEB. (2019). Coolproducts don’t cost the earth – Full report. 
https://eeb.org/library/coolproducts-report/

European Commission. (2022, May 18). 5 digital solutions for a greener Eu-
rope. https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/5-
digital-solutions-greener-europe-2022-07-05_en

European Commission. (2023, March 22). Right to repair: Commission intro-
duces new consumer rights for easy and attractive repairs [Press release]. 
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_1794

Fleder, D., Hosanagar, K., & Buja, A. (2010). Recommender systems and their 
effects on consumers: The fragmentation debate. Proceedings of the 11th 
ACM Conference on Electronic Commerce, 229 – 230.  
https://doi.org/10.1145/1807342.1807378

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., & 
Friday, A. (2021). The real climate and transformative impact of ICT: 
A critique of estimates, trends, and regulations. Patterns, 2(9), 100340. 
https://doi.org/10.1016/j.patter.2021.100340

Frick, V., Jaeger-Erben, M., & Hipp, T. (2019). The “making” of product 
lifetime: The role of consumer practices and perceptions for longevity. 
PLATE, Berlin.

Fuentes, C., & Sörum, N. (2019). Agencing ethical consumers: Smartphone 
apps and the socio-material reconfiguration of everyday life. Consump-
tion Markets & Culture, 22(2), 131 – 156. https://doi.org/10.1080/102538
66.2018.1456428

GeSI. (2015). #SMARTer2030 – ICT Solutions for 21st Century Challenges. 
https://smarter2030.gesi.org/downloads/Full_report.pdf



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 2904

Gossen, M., Hoffmann, M. L., & Güldenpenning, N. (2022). Glaubwürdige 
und leicht verfügbare Nachhaltigkeitsinformationen bei der Internetsuche 
auf Ecosia. Der grüne Konsumassistent als Lösungsansatz für die Infor-
mationskomplexität nachhaltiger Konsumentscheidungen. In M. Schlaile 
& L. F. Stöber (Eds.), Consumer Social Responsibility im digitalen 
Raum: Entscheidungsarchitekturen, geteilte Verantwortung und Hand-
lungsspielräume (pp. 121 – 140). Metropolis-Verlag.

Gossen, M., Tröger, J., Veneny, M., Eichhorn, H., & Bergener, J. (2023). Do 
people make sufficiency-oriented mobile phone choices based on dy-
namic norms? The perception and effectiveness of sufficiency-promoting 
messages in online media. Frontiers in Sustainability, 4, 1145243. 
https://doi.org/10.3389/frsus.2023.1145243

Gröger, J., Köhler, A., Naumann, S., Filler, A., Guldner, A., Kern, E., Hilty, 
L. M., & Maksimov, Y. (2018). Entwicklung und Anwendung von Bew-
ertungsgrundlagen für ressourceneffiziente Software unter Berücksichti-
gung bestehender Methodik (105/2018). Umweltbundesamt. 
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publika-
tionen/2018-12-12_texte_105-2018_ressourceneffiziente-software_0.pdf

Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., & Pineau, J. 
(2022). Towards the systematic reporting of the energy and carbon foot-
prints of machine learning. arXiv. http://arxiv.org/abs/2002.05651

Hoffmann, M. L. (2022). Working paper: Nachhaltige Produktempfehlungen – 
Identifizierung und Bewertung nachhaltiger Produkte. 
https://green-consumption-assistant.de/wp-content/uploads/Working-Pa-
per_Nachhaltige-Produktempfehlungen-im-GCA_20221219.pdf

Hoosain, M. S., Paul, B. S., Kass, S., & Ramakrishna, S. (2023). Tools towards 
the sustainability and circularity of data centers. Circular Economy and 
Sustainability, 3(1), 173 – 197. https://doi.org/10.1007/s43615-022-00191-9

Horner, N. C., Shehabi, A., & Azevedo, I. L. (2016). Known unknowns: Indi-
rect energy effects of information and communication technology. Envi-
ronmental Research Letters, 11(10), 103001. 
https://doi.org/10.1088/1748-9326/11/10/103001

Icha, P., & Lauf, T. (2022). Entwicklung der spezifischen Treibhausgas-Emis-
sionen des deutschen Strommix in den Jahren 1990 – 2021 (15/2022; 
Climate Change). Umweltbundesamt. https://www.umweltbundesamt.de/
sites/default/files/medien/1410/publikationen/2022-04-13_cc_15-2022_
strommix_2022_fin_bf.pdf

IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Summary 
for Policy Makers. https://www.ipcc.ch/report/ar6/wg3/downloads/report/
IPCC_AR6_WGIII_SPM.pdf



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 3004

Irvine, M. (2021). Google Shopping Ads Benchmarks: Average CPC, 
CTR, Monthly Budget, & More. https://www.wordstream.com/blog/
ws/2019/04/01/shopping-ads-benchmarks

Environmental management – Life cycle assessment – Requirements and 
guidelines (ISO 14044:2006), (2006). https://doi.org/10.31030/2761237

Itten, R., Hischier, R., Andrae, A. S. G., Bieser, J. C. T., Cabernard, L., Falke, 
A., Ferreboeuf, H., Hilty, L. M., Keller, R. L., Lees-Perasso, E., Preist, 
C., & Stucki, M. (2020). Digital transformation – Life cycle assessment 
of digital services, multifunctional devices and cloud computing. The 
International Journal of Life Cycle Assessment. https://doi.org/10.1007/
s11367-020-01801-0

Jäckle, S. (2021). Reducing the carbon footprint of academic conferences by 
online participation: The case of the 2020 Virtual European Consortium 
for Political Research General Conference. PS: Political Science & Poli-
tics, 54(3), 456 – 461. https://doi.org/10.1017/S1049096521000020

Jäger, S., Greene, J., Jakob, M., Korenke, R., Santarius, T., & Biessmann, F. 
(2022). GreenDB: Toward a product-by-product sustainability database. 
arXiv. http://arxiv.org/abs/2205.02908

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, 
D. (2022). Aligning artificial intelligence with climate change mitiga-
tion. Nature Climate Change, 12(6), 518 – 527. https://doi.org/10.1038/
s41558-022-01377-7

Kern, E., Hilty, L. M., Guldner, A., Maksimov, Y. V., Filler, A., Gröger, J., & 
Naumann, S. (2018). Sustainable software products – Towards assess-
ment criteria for resource and energy efficiency. Future Generation Com-
puter Systems, 86, 199 – 210. https://doi.org/10.1016/j.future.2018.02.044

Klein, N., & O’Brien, E. (2018). People use less information than they think to 
make up their minds. Proceedings of the National Academy of Sciences, 
115(52), 13222 – 13227. https://doi.org/10.1073/pnas.1805327115

Köhler, S., Herzog, B., Honig, T., Wenzel, L., Plauth, M., Nolte, J., Polze, A., 
& Schroder-Preikschat, W. (2020). Pinpoint the joules: Unifying run-
time-support for energy measurements on heterogeneous systems.

Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the car-
bon emissions of machine learning. arXiv. http://arxiv.org/abs/1910.09700

Lange, S., Pohl, J., & Santarius, T. (2020). Digitalization and energy con-
sumption. Does ICT reduce energy demand? Ecological Economics, 176, 
106760. https://doi.org/10.1016/j.ecolecon.2020.106760

Lannelongue, L., Grealey, J., & Inouye, M. (2021). Green Algorithms: Quan-
tifying the Carbon Footprint of Computation. Advanced Science, 8(12), 
2100707. https://doi.org/10.1002/advs.202100707



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 3104

Lehmann, C. (2021). Scaling sustainability advice – Options for generating 
large-scale green consumption recommendations [Working Paper].

Luccioni, A. S., Viguier, S., & Ligozat, A.-L. (2022). Estimating the carbon 
footprint of BLOOM, a 176B parameter language model. arXiv.  
http://arxiv.org/abs/2211.02001

Malmodin, J. (2020). The power consumption of mobile and fixed network 
data services – The case of streaming video and downloading large files. 
International Congress “Electronics Goes Green 2020+”. Proceedings: 
The Story of Daisy, Alexa and Greta, September 1, 2020, Berlin, Germa-
ny, Virtual, 10.

Mickoleit, A. (2010). Greener and Smarter: ICTs, the environment and climate 
change (OECD Green Growth Papers 2010/01). OECD.  
https://doi.org/10.1787/5k9h3635kdbt-en

Pamminger, R., Glaser, S., & Wimmer, W. (2021). Modelling of different cir-
cular end-of-use scenarios for smartphones. The International Journal of 
Life Cycle Assessment, 26(3), 470 – 482. https://doi.org/10.1007/s11367-
021-01869-2

Patterson, D., Gonzalez, J., Holzle, U., Le, Q., Liang, C., Munguia, L.-M., 
Rothchild, D., So, D. R., Texier, M., & Dean, J. (2022). The carbon foot-
print of machine learning training will plateau, then shrink. Computer, 
55(7), 18 – 28. https://doi.org/10.1109/MC.2022.3148714

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., 
So, D., Texier, M., & Dean, J. (2021). Carbon emissions and large neural 
network training. arXiv. https://doi.org/10.48550/ARXIV.2104.10350

Pohl, J., Hilty, L. M., & Finkbeiner, M. (2019). How LCA contributes to the 
environmental assessment of higher order effects of ICT application: 
A review of different approaches. Journal of Cleaner Production, 219, 
698 – 712. https://doi.org/10.1016/j.jclepro.2019.02.018

Repenning, J., Harthan, R., Bürger, V., Cook, V., Emele, L., Göckeler, K., 
Görz, W. K., Hacker, F., Hennenberg, K., Jörß, W., Kasten, P., Kreye, K., 
Ludig, S., Matthes, F. C., Moosmann, L., Nissen, C., Reise, J., Schef-
fler, M., Schumacher, K., … Steinbach, J. (2023). Klimaschutzinstru-
mente-Szenario 2030 (KIS-2030) zur Erreichung der Klimaschutzziele 
2030 (30/2023). Umweltbundesamt. https://www.umweltbundesamt.de/
publikationen/klimaschutzinstrumente-szenario-2030-kis-2030-zur

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, 
K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., 
Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, 
K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., … Bengio, Y. 
(2023). Tackling climate change with machine learning. ACM Computing 
Surveys, 55(2), 1 – 96. https://doi.org/10.1145/3485128



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 3204

Sánchez, D., Proske, M., & Baur, S.-J. (2022). Life Cycle Assessment of the 
Fairphone 4. Fraunhofer IZM. https://www.fairphone.com/wp-content/
uploads/2022/07/Fairphone-4-Life-Cycle-Assessment-22.pdf

Santarius, T., Bieser, J. C. T., Frick, V., Höjer, M., Gossen, M., Hilty, L. M., 
Kern, E., Pohl, J., Rohde, F., & Lange, S. (2022). Digital sufficiency: 
Conceptual considerations for ICTs on a finite planet. Annals of Telecom-
munications. https://doi.org/10.1007/s12243-022-00914-x

Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., Seufert, S., & 
Szarvas, G. (2015). On challenges in machine learning model manage-
ment. https://assets.amazon.science/7d/38/968b82c745bd9859a79da-
b0aade8/on-challenges-in-machine-learning-model-management.pdf 

Schneider, A. F., Matinfar, S., Martino Grua, E., Casado-Mansilla, D., & 
Cordewener, L. (2018). Towards a sustainable business model for smart-
phones: Combining product-service systems with modularity. 82 – 63. 
https://doi.org/10.29007/djcz

Schulte, P., Welsch, H., & Rexhäuser, S. (2016). ICT and the demand for ener-
gy: Evidence from OECD countries. Environmental and Resource Eco-
nomics, 63(1), 119 – 146. https://doi.org/10.1007/s10640-014-9844-2

Selvan, R., Bhagwat, N., Anthony, L. F. W., Kanding, B., & Dam, E. B. 
(2022). Carbon footprint of selecting and training deep learning mod-
els for medical image analysis (Vol. 13435, pp. 506 – 516). https://doi.
org/10.1007/978-3-031-16443-9_49

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy consider-
ations for deep learning in NLP (The 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), p. 6). https://doi.org/10.48550/
arxiv.1906.02243

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., 
Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., 
Grave, E., & Lample, G. (2023). LLaMA: Open and efficient foundation 
language models. arXiv. http://arxiv.org/abs/2302.13971

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., 
Chang, G., Behram, F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., 
Ott, M., Melnikov, A., Candido, S., Brooks, D., Chauhan, G., Lee, B., 
Lee, H.-H. S., Hazelwood, K. (2022). Sustainable AI: Environmental im-
plications, challenges and opportunities. http://arxiv.org/abs/2111.00364

Zhang, K., Li, S., Qin, P., & Wang, B. (2022). Spatial and temporal effects 
of digital technology development on carbon emissions: Evidence from 
China. Sustainability, 15(1), 485. https://doi.org/10.3390/su15010485



CAN SUSTAINABLE SHOPPING RECOMMENDATIONS HELP REDUCE GLOBAL WARMING? \ 3304

Appendix

Table A1: Avoided GHG emission estimates from existing research for the ex-
tension of smartphone lifespans.

Source Baseline scenario Lifespan extension scenario
Difference in life-cycle emis-
sions in kg of CO2 (avoided 
emissions)

Schneider et al., 
2018

Non-modular smart-
phone with repairs, 
lifespan of 5 years 

Modular smartphone with repairs, 
lifespan of 5 years 14.97

Cordella et al.  
2021

2-year replacement 
cycle over a period of 
4.5 years

3-year replacement cycle, with  
battery and display change 17.7

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

3-year replacement cycle, with  
display change 18.1

Sánchez et al.,  
2022

3-year replacement 
cycle over a period of 5 
years, without repair

5-year replacement cycle, with repair
20.6

Sánchez et al.,  
2022

3-year replacement 
cycle over a period of 5 
years, without repair

5-year replacement cycle, without 
repair 22.3

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

3-year replacement cycle over a peri-
od of 4.5 years, with battery change 22.5

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

3-year replacement cycle over a 
period of 4.5 years 22.9

Pamminger et al., 
2021

2,5-year replacement 
cycle without repair 

Smartphones with repair (repair 
success rate of 75%) and an average 
second use time of 1.56 years

24.6

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

4-year replacement cycle over a 
period of 4.5 years, with battery and 
display change

30.5

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

4-year replacement cycle over a peri-
od of 4.5 years, with display change 30.8

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

4-year replacement cycle over a peri-
od of 4.5 years, with battery change 34.1

Cordella et al., 
2021

2-year replacement 
cycle over a period of 
4.5 years

4-year replacement cycle over a 
period of 4.5 years 34.4
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Table A2: The assessed software steps and the explanation about what is 
done, which data are used, what is excluded, what are the limitations, and 
where these steps are measured.

Scraping - 
GreenDB (1)

Extraction - 
GreenDB (2)

External In-
formation (3)

EM Training 
(4)

EM (5) Ecosia’s Re-
ranking (6)

What is done?

Web retailers 
scraping

Extraction of 
the web data 
in 1

Extraction of 
external label 
resources

Training an 
SBERT model 
on WDC

Application of 
the resources 
from 4 to the 
data from 2

Ranking of the 
top N products 
(smartphones) 
based on the 
data 5 and 2

Tools
Python; Scrapy Python; 

Extruct; Post-
gresql

Extruct HuggingFace; 
Pytorch

Python Python

Data

Smartphone 
websites from 
Amazon, 
OTTO

Scraped web-
sites in 1

IFIXIT; TCO; 
French Repair-
ability Index

WDC Products 
data

The data 
output from 2 
and 3

The unified 
data output 
from 2 and 5

What is  
excluded?

Set-Up;
Maintenance

Set-Up;
Maintenance

Set-Up;
Maintenance
Data Retrieval

Set-Up;
Maintenance

Set-Up;
Maintenance

Set-Up;
Maintenance

Limitation

Not measur-
ing the actual 
deployed code, 
but instead a 
local version

Not measur-
ing the actual 
deployed code, 
but instead a 
local version

Not measur-
ing the actual 
deployed code, 
but instead a 
local version

Not measur-
ing the actual 
deployed code, 
but instead a 
local version

Not measur-
ing the actual 
deployed code, 
but instead a 
local version

Measuring 
Location

Local machine Local machine Local machine Cluster Local machine Local machine
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